Jumat, 12 Agustus 2011

Laporan Enkapsulasi

Laporan Enkapsulasi Iin Windarti (Scribd)

Enkapsulasi

ENKAPSULASI

Enkapsulasi secara umum merupakan sebuah proses yang membuat satu jenis paket data jaringan menjadi jenis data lainnya. Enkapsulasi terjadi ketika protokol yang berada pada lapisan yang lebih rendah menerima data dari protokol yang berada di lapisan lebih tinggi dan meletakkan data ke format data yang dipahami oleh protokol tsb. Dalam OSI Reference Model, proses enkapsulasi terjadi pada lapisan terendah yang disebut "framing". Beberapa jenis enkapsulasi antara lain:
1. Frame Ethernet yang melakukan enkapsulasi terhadap datagram yang dibentuk oleh Internet Protocol (IP), yang dalam datagram tsb melakukan enkapsulasi terhadap paket data yang dibuat oleh protokol TCP atau UDP. Data yang dienkapsulasi oleh protokol TCP atau UDP tersebut merupakan data aktual yang ditransmisikan melalui jaringan.
2. Frame Ethernet yang dienkapsulasi ke dalam bentuk frame Asynchronous Transfer Mode (ATM) agar dapat ditransmisikan melalui backbone ATM.
Lapisan data-link dalam OSI Reference Model merupakan lapisan yang bertanggung jawab dalam melakukan enkapsulasi atau framing data sebelum ditransmisikan media jaringan (kabel, radio, atau cahaya). Dalam teknologi jaringan Local Area Network (LAN), dilakukan oleh Carrier sense multiple access with collision detection (CSMA/CD) untuk jaringan Ethernet; token-passing untuk jaringan Token Ring, dll.
Agar sebuah data dapat terkirim dengan baik perlu dilakukan enkapsulasi terhadap data tersebut. Enkapsulasi adalah sebuah proses menambahkan header dan trailer atau melakukan pemaketan pada sebuah data. Dengan enkapsulasi data menjadi memiliki identitas.

Alur Data adalah proses berjalannya sebuah data dari sumber ke tujuan melalui OSI layer. Jadi untuk mencapai tujuan sebuah data harus melalui lapisan-lapisan OSI terlebih dahulu.
1. Pertama-tama data dibuat oleh Host A. Kemudian data tersebut turun dari Application layer sampai ke physical layer (dalam proses ini data akan ditambahkan header setiap turun 1 lapisan kecuali pada Physical layer, sehingga terjadi enkapsulasi sempurna).
2. Data keluar dari host A menuju kabel dalam bentuk bit (kabel bekerja pada Physical layer).
3. Data masuk ke hub, tetapi data dalam bentuk bit tersebut tidak mengalami proses apa-apa karena hub bekerja pada Physical layer.
4. Setelah data keluar dari hub, data masuk ke switch. Karena switch bekerja pada Datalink layer/ layer 2, maka data akan naik sampai layer 2 kemudian dilakukan proses, setelah itu data turun dari layer 2 kembali ke layer 1/ phisycal layer.
5. Setelah data keluar dari switch, data masuk ke router. Karena router bekerja pada layer 3/ Network layer, maka data naik sampai layer 3 kemudian dilakukan proses, setelah itu data turun dari layer 3 kembali ke layer 1 , dan data keluar dari router menuju kabel dalam bentuk bit.
6. Pada akhirnya data sampai pada host B. Data dalam bentuk bit naik dari layer 1 sampai layer 7. Dalam proses ini data yang dibungkus oleh header-header layer OSI mulai dilepas satu persatu sesuai dengan lapisannya (berlawanan dengan proses no 1 ). Setelah data sampai di layer 7 maka data siap dipakai oleh host B.


Tabel Standar Spesifikasi IEEE


Name
Description
Note
Bridging (networking) and Network Management

inactive

disbanded
Defines the MAC layer for a Token Ring
inactive
disbanded
Broadband LAN using Coaxial Cable
disbanded
Fiber Optic TAG
disbanded
Integrated Services LAN
disbanded
Interoperable LAN Security
disbanded
Wireless LAN (WLAN) & Mesh (Wi-Fi certification)

IEEE 802.12
disbanded
IEEE 802.13
unused

IEEE 802.14
disbanded

Bluetooth certification

IEEE 802.15 and IEEE 802.11 coexistence

High-Rate wireless PAN

Low-Rate wireless PAN (e.g., ZigBee, WirelessHART, MiWi, etc.)

Mesh networking for WPAN

Broadband Wireless Access (WiMAX certification)

IEEE 802.16.1

Resilient packet ring

Radio Regulatory TAG

Coexistence TAG

Mobile Broadband Wireless Access

Media Independent Handoff

Wireless Regional Area Network

Emergency Services Working Group
New (March, 2010)

Tambahan untuk IEEE 802.3

Tahun/tanggal
Keterangan
Experimental Ethernet
Protokol Ethernet yang pertama, yang mampu mentransmisikan data melalui kabel koaksial dantopologi bus dengan kecepatan 2,94 megabit per detik.
Ethernet II (DIX 2.0)
Protokol Ethernet hasil pengembangan selanjutnya, yang mampu mentransmisikan data melalui kabel koaksial tipis (thinnet), dengan kecepatan 10 megabit per detik. Pada standar ini juga diperkenalkan field EtherType. Format frame ini juga yang digunakan oleh protokol-protokol di dalam protokol Internet (TCP/IP).
IEEE 802.3
Protokol Ethernet standar 10BASE5 yang mampu mentransmisikan data dengan kecepatan 10 Megabit per detik melalui kabel koaksial tebal (thicknet). Protokol ini sama seperti halnya DIX, kecuali pada field EtherType diganti oleh Length, dan sebuah header IEEE 802.2 yang menyertai header IEEE 802.3. Lebih jelasnya lihat di bagian bawah.
IEEE 802.3a
1985
Protokol Ethernet standar 10BASE2 yang mampu mentransmisikan data dengan kecepatan 10 Megabit per detik melalui kabel koaksial tipis (thinnet).
IEEE 802.3b
1985
10Broad36
IEEE 802.3c
1985
Spesifikasi repeater jaringan dengan kecepatan 10 megabit per detik.
IEEE 802.3d
1987
Fiber-Optic Inter-Repeater Link (FOIRL)
IEEE 802.3e
1987
10Base5 atau StarLAN
IEEE 802.3i
1990
Standar Ethernet 10BaseT, yang mampu mentransmisikan data dengan kecepatan 10 megabit per detik melalui kabel tembaga yang dipilin (twisted pair).
IEEE 802.3j
1993
Standar Ethernet 10BaseF, yang mampu mentransmisikan data dengan kecepatan 10 megabit per detik melalui kabel serat optik (Fiber-optic).
IEEE 802.3u
1995
Standar Fast Ethernet 100BaseTX, 100BaseT4, 100BaseFX, yang mampu mentransmisikan data dengan kecepatan 100 megabit per detik melalui kabel tembaga yang dipilin (twisted pair) dan juga menawarkan fungsi autonegotiation.
IEEE 802.3x
1997
Full duplex dan flow control
IEEE 802.3y
1998
Standar Fast Ethernet 100BaseT2, yang mampu mentransmisikan data dengan kecepatan 100 megabit per detik melalui kabel tembaga yang dipilin (twisted pair) kualitas rendah.
IEEE 802.3z
1998
Standar Gigabit Ethernet 1000Base-X, yang mampu mentransmisikan data dengan kecepatan 1000 megabit per detik (1 gigabit per detik) melalui kabel serat optik (fiber-optic).
IEEE 802.3-1998
1998
Revisi standar dasar yang menggabungkan semua amandemen dan ralat di atas.
IEEE 802.3ab
1999
Standar Gigabit Ethernet 1000BaseT, yang mampu mentransmisikan data dengan kecepatan 1000 megabit per detik (1 gigabit) melalui kabel tembaga yang dipilin (twisted pair).
IEEE 802.3ac
1998
Ukuran frame maksimum diperluas hingga 1522 byte (untuk mengizinkan "Q-tag"). Q-tag mencakup informasi Virtual Local Area Network (VLAN) IEEE 802.1Q dan informasi prioritas IEEE 802.1p.
IEEE 802.3ad
2000
Link aggregation untuk saluran-saluran paralel.
IEEE 802.3-2002
2002
Sebuah revisi yang menggabungkan tiga amandemen terakhir dan ralat.
IEEE 802.3ae
2003
Standar 10 Gigabit Ethernet 10GBase-SR,10GBase-LR, 10GBase-ER, 10GBase-SW, 10GBase-LW, dan 10GBase-EW yang mampu mentransmisikan data dengan kecepatan 10000 megabit per detik (10 gigabit).
IEEE 802.3af
2003
Power over Ethernet (PoE)
802.3ah
2004
Ethernet in the First Mile
IEEE 802.3ak
2004
Standar 10 Gigabit Ethernet 10GBase-CX4, yang mampu mentransmisikan data dengan kecepatan 10000 megabit per detik (10 gigabit) melalui kabel twin-axial.
IEEE 802.3-2005
2005
Revisi standar dasar yang menggabungkan empat amandemen dan ralat di atas.


Search

Guests

About Me

Foto saya
Kota Cimahi, Prov. Jawa Barat, Indonesia
akan menghargai jika dihargai, kalo gak suka ma orang susah untuk gak bisa suka tau simpati lagi, bosenan, gak sabaran, gelehan tapi jorok.. aku rame kalo kamu rame, aku galak kalo kamu jahat.. dan masih banyak lagi tentang aku, dan orang pikir tentang aku, manja juga sih... hehe..
Diberdayakan oleh Blogger.

Followers