Minggu, 27 November 2011

Protokol Routing

Tujuan utama dari routing protokol adalah untuk membangun dan memperbaiki tabel routing. Dimana tabel ini berisi jaringan-jaringan dan interface yang berhubungan dengan jaringan tersebut.
Router menggunakan protokol routing ini untuk mengatur informasi yang diterima dari router-router lain dan interface-nya masing-masing, Sebagaimana yang terjadi di konfigurasi routing secara manual. Routing protokol mempelajari semua router yang ada, menempatkan rute yang terbaik ke tabel routing, dan juga menghapus rute ketika rute tersebut sudah tidak valid lagi.Router menggunakan informasi dalam tabel routing untuk melewatkan paket-paket routed protokol.
Informasi yang terdapat di dalam tabel routing dapat diperoleh melalui perantara administrator (secara manual mengisi tabel routing) atau melalui router atau PC router tetangga yang saling bertukar informasi tabel routing.
Tabel routing pada umumnya berisi informasi tentang :
  • Alamat network tujuan.
  • Interface router atau PC router lokal yang terdekat dengan network tujuan.
  • Metric, yakni sebuah nilai yang menunjukkan jarak untuk mencapai network tujuan.
Parameter-parameter yang biasa digunakan untuk menghasilkan sebuah nilai metric, diantaranya :
  • Hop count, berdasarkan pada banyaknya router atau PC router yang dilewati.
  • Ticks, berdasarkan waktu yang diperlukan dengan satuan waktu ticks.
  • Cost , berdasarkan perbandingan sebuah nilai patokan standard dengan bandwidth yang tersedia.
  • Composite metric, berdasarkan perhitungan dari parameter-parameter lain, yaitu  Bandwidth, Delay, Load, Reliability, MTU (Maximum Transmit Unit)
Dari parameter tersebut tidak selalu digunakan semua Penggunaan dari parameter-parameter tersebut tergantung pada jenis routing protokol yang digunakan oleh router atau PC router dalam memelihara atau membentuk tabel routing.
Pembagian Protokol Routing
Tabel routing tersebut menyimpan informasi mengenai network yang terhubung dengannya (Connected Networks) maupun network yang tidak terhubung dengannya (Remote networks).
Connected networks adalah network yang terhubung dengan salah satu interface pada router. Remote networks adalah network yang tidak terhubung langsung dengan salah interface pada router. Routing Tabel bisa dibentuk dengan berbagai macam cara yaitu dengan Static Routing maupun Dynamic Routing.
Static Routing
Dynamic Routing
Routing diatur secara manual oleh administratorRouting ditentukan oleh protocol routing
Lebih cocok digunakan pada jaringan skala kecilBiasa digunakan pada jaringan skala besar (dari sebuah referensi mengatakan jaringan skala besar memiliki minimal 10 router di dalamnya)
Bila ada link yang putus, maka administrator harus mengeset ulangBila ada link yang putus, maka protocol routing akan mengupdate table routing dan menentukan jalur routing yang baru
Static routing adalah routing tabel yang dibentuk dengan cara di-entry secara manual oleh network administrator, sedangkan Dynamic Routing adalah Routing Tabel yang dibentuk secara otomatis dengan menggunakan dynamic routing protokols.
Dynamic Routing Protokol dibagi kedalam dua kategori yaitu IGP (Interior Gateway Protokol)  dan EGP (Exterior Gateway Protokol).
Exterior Gateway Protokol (EGP) adalah protokol yang melakukan routing antar autonomous systems, contohnya BGP (Border Gateway Protocol)
Interior Gateway Protokols (IGPs) adalah protokol yang melakukan routing di dalam satu autonomous systems.
IGP dibagi ke dalam dua kategori lagi yaitu
  • distance-vector
  • link-state protokols
Distance Vector
Link state
Hanya memiliki 1 Tabel, yaitu Tabel RoutingMemiliki 3 Tabel, yaitu Tabel Routing, Tabel Topologi, dan Tabel Tetangga
Bekerja menggunakan Algoritma Bellman FordBekerja dengan Algoritma Djikstra
Menggunakan sedikit memoriMenggunakan memori yang lebih banyak dibanding Distance Vector
Contoh Protokol Routing Distance Vector :
  • Routing Information Protokol (RIP)
  • Interior Gateway Routing Protokol (IGRP)
Contoh Protokol Routing Link State :
  • Open Shortest Path First (OSPF)
  • Intermediate system to Intermediate system (IS-IS)
sumber: http://imammashari.wordpress.com/2010/09/12/protokol-routing/

Membangun Jaringan Wireless

Susahkah membangun wireless network? Pertanyaan ini sering dilontarkan dari mereka yang belum mengerti betul dengan jaringan komputer. jaringan komputer yang berskala besar seperti dalam suatu jaringan corporate atau enterprise tentulah harus didesign dan dikelola oleh para ahli dalam bidang jaringan dan security. Akan tetapi untuk keperluan jaringan kecil di rumah dan kantor kecil, anda bisa melakukannya sendiri dirumah dengan.
  • Keuntungan jaringan wireless
  • Kebutuhan untuk membangun WLAN
  • Memilih Kebutuhan Perangkat
  • Yang Perlu Diperhatikan
  • Setup dan Konfigurasi
Artikel ini diusahakan sedemikian rupa agar bisa difahami oleh mereka yang kurang faham betul dengan jaringan komputer dan digunakan sebagai acuan untuk membangun suatujaringan wireless dirumah atau kantor kecil. Tentunya tidak akan membahas kompleksitas mendalam sampai ke model jaringan seperti model OSI, tidak.
Keuntungan Jaringan Wireless
Jaringan wireless mempunyai keuntungan yang nyata: tapa kabel, walau sebenarnya ada jaringan kabel yang terlibat didalamnya. Secara umum suatu jaringan komputer mempunyai keuntungan diantaranya sebagai berikut:
  • Memungkinkan kita sharing sambungan internet dengan beberapa komputer
  • Sharing sebuah printer yang bisa diakses rame-rame lewat jaringan tanpa harus mengantri – just send data untuk di print dan selebihnya system yang akan mengatur antriannya.
  • Dengan adanya jaringan wireless anda bisa browsing internet dari mana saja dirumah selama masih dalam jangkauan wireless – tanpa kabel, bisa di pinggir kolam, di gazebo, di pendopo anda, atau di teras (rumahnya kayak yang di sinetron).
  • Dengan jaringan wireless, anda bisa membuat panggilan telpon Skype gratis ke seluruh dunia tanpa harus menghidupkan komputer anda.
  • Dengan jaringan anda bisa bermain game multiplayer online
Kebutuhan Untuk Membangun Jaringan Wireless
Seperti dibahas diawal, bahwa artikel ini ditujukan buat mereka yang tidak mempunyai pengalaman praktis dalam hal computer networking atau home users yang ingin membangun jaringan wireless dirumah atau dikantor kecil atau SOHO. Untuk itulah maka tidak dibahas secara detail masalah background technis yang rumit kecuali sekedar dasar yang memadai untuk membangun suatu jaringan wireless.
Alasan umum dibutuhkannya jaringan (wireless) dirumah adalah salah satunya yang paling mendasar adalah untuk sharing koneksi Internet dari sambungan broadband internet baik DSL ataupun Cable. Jika kita inginkan dua komputer untuk bisa saling berkomunikasi, maka yang anda perlukan adalah media penghubung agar keduanya bisa saling terhubung yang pada akhirnya bisa saling berkomunikasi.
Infrastructur Fisik Jaringan
Jika hanya ada dua komputer untuk bisa saling berkomunikasi, maka cukup diperlukan sebuah kabel jaringan yang menghubungkan kedua komputer melalui port NIC adapter (LAN Card) mereka. Jika ada lebih dari dua komputer maka anda membutuhkan sebuah Switch LAN (dengan 8 atau 24 port) sebagai concentrator dimana anda menghubungkan semua komputer kepada Switch tersebut melalui kabel jaringan. Dengan konsep ini anda telah membuat suatu jaringan workgroup local LAN. Ini adalah merupakan infrastcruktur fisik jaringan LAN pertama – sebuah Switch.
Bagaimana dengan sambungan internet? Jika dirumah anda telah tersedia sambungan broadband Internet baik berupa Cable atau ADSL, tentunya sudah tersedia modem yang tadinya tersambung langsung dengan sebuah komputer tunggal lewat sambungan kabel USB (ke port USB komputer) atau kabel UTP (ke port NIC adapter komputer). Hampir semua modem (Cable atau ADSL) mempunyai port Ethernet untuk sambungan ke pada LAN. Untuk memungkinkan semua komputer terhubung ke Internet, maka anda perlu membuat (memindah) sambungan kabel UTP dari port Ethernet modem ke Switch.
Gambar berikut adalah diagram jaringan LAN infrastcrutur fisik yang menghubungkan semua komputer ke Switch dan begitu juga modem terhubung kepada switch.
diagram jaringan wireless sederhana
Bagaimana dengan jaringan wireless? Jaringan wireless berarti anda perlu menambahkan / membuat extension secara wireless dari sambungan LAN anda. Prinsip extension jaringan LAN secara wireless adalah dengan menmbahkan sebuah Wireless Access Point. Access point ini berfungsi sebagai jembatan yang memungkinkan terjadinya komunikasi antara komputer (perangkat jaringan) yang ada di jaringan wireless dengan perangkat jaringan lainnya yang ada pada jaringan kabel. Dari sini prinsip dasar infrastructure jaringan fisik gabungan sebuah jaringan LAN dan jaringan wireless dengan sambungan internet telah lengkap.
Bagaimana Memilih Perangkat Yang Tepat
Pertama kali yang perlu anda lakukan adalah kenali terlebih dahulu fitur / fasilitas modem yang ada sekarang ini. Yang perlu kita perhatikan adalah apakah dia mempunyai fasilitas / fitur firewall atau router, DHCP server, dan Ethernet port. Hal ini dimaksudkan untuk mengetahui kebutuhan akan sebuah wireless access point atau sebuah wireless router yang perlu kita beli.
Jika modem yang ada sekarang ini adalah modem murni yang tidak mempunyai fitur firewall/router dan DHCP server, maka anda memerlukan sebuah wireless router. Wireless router mempunyai fitur lengkap termasuk fitur firewall / router, DHCP services, Swicth LAN dan wireless access point.
Jika modem yang dirumah sekarang ini termasuk type modem dengan dilengkapi fitur firewall / router, dan DHCP server, maka yang anda butuhkan hanyalah sebuah wireless access point untuk membuat jaringan wireless anda.
Untuk mengenalinya tentunya dengan membuka buku manual dari modem tersebut. Atau jika tidak ada, anda harus menanyakan ke ISP anda atau mencari informasinya di Internet setelah mengetahui type dari modem tersebut.
Setelah anda mengetahui kebutuhan akan wireless access point atau wireless router, tentunya peerlu memilih wireless AP/Router yang bagaimana sepsifikasi teknisnya. Jika anda mempunyai budget memadai, maka saya sarankan untuk membeli wireless access point / router dengan fitur technology yang paling bagus yang ada dipasaran. Hal ini akan melindungi investasi anda di masa depan. Apa saja sepecifikasi yang perlu diperhatikan?
  1. Wireless Standard: standard wireless yang paling gress saat ini adalah draft 802.11n atau lebih dikenal dengan wireless –n yang merupakan technology masa depan yang belum diratifikasi secara final. Akan tetapi semua pabrikan jaringan telah mengadopsi teknologi masa depan ini.
  2. Dual-band: perangkat anda support dual frequency band yaitu 2.4 GHz dan 5 GHz baik yang selectable maupun yang simultaneous. Frequency 5GHz lebih jernih dan sangat bagus untuk streaming video dan juga gaming
  3. Support WPA/WPA2: merupakan standard industry keamanan wireless paling baru. Semua perangkat wireless dengan standard Wireless –n akan support standard WPA/WPA2 ini, walaupun banyak juga jenis wireless –g dilengkapi dengan standard WPA/WPA2 ini.
  4. Technology antenna cerdik MIMO (multiple in multiple out) atau technology serupa yang bisa memberikan jangkauan wireless lebih baik dan juga lebih cepat.
Banyak sekali produsen pabrikan yang memproduksi jajaran perangkatnya dengan keempat fitur dasar tersebut diatas. Tentunya harganya sedikit lebih mahal dibanding standard dibawahnya, akan tetapi sebanding dengan kualitas yang bakal anda dapatkan.
Jika anda mempunyai perangkat adapter (pada laptop, komputer, smartphone) dengan standard wireless –b/g, apakah akan compatible dengan router /AP dengan standard wireless –n? Hampir semua AP/ router dengan standard wireless –n menjamin backward compatible dengan standard wireless dibawahnya (wireless –b/g) dan biasanya ditandai dengan label Wi-Fi Certified b/g/n.
Yang Perlu Diperhatikan
Sinyal gelombang radio dalam merambat lewat udara tentunya akan terhalang oleh beberapa halangan seperti tembok, pohon, atau benda penghalang lainnya yang tentunya akan mengurangi atau mempengaruhi tingkat penerimaan disisi penerima. Usahakan meletakkan wireless router / AP anda pada area dimana dengan tingkat penghalang yang minim antara router dan penerima (computer). Usahakan segaris lurus dengan AP/router untuk mendapatkan koneksi yang optimal. Metal, aluminium, kaca, tembok akan mempunyai efek negative terhadap kualitas sinyal wireless. Belum lagi gelombang interferensi dari genset, microwave oven, dll juga berpengaruh pada gelombang 2.4 GHz. Lihat juga pertimbangan instalasi wireless.
Konfigurasi dan Setup
Sebelumnya kita perlu mengenali terlebih dahulu port-port apa saja dari modem anda. Berikut adalah gambar sebuah modem DSL yang umum di pasaran.
Port USB biasa digunakan untuk koneksi langsung dari modem ke satu komputer. akan tetapi untuk kebutuhan membangun jaringan wireless anda, maka anda tidak memerlukan port USB ini. Yang anda butuhkan adalah port Ethernet RJ-45 yang akan dikoneksikan kepada wireless AP atau router anda pada port dengan label WAN (atau WLAN port, atau Internet). Port RJ-45 ini juga bisa anda koneksikan langsung ke sebuah Switch jika anda tidak ingin menggunakan jaringan wireless.
Sementara port RJ-11 adalah port dimana anda hubungkan ke line telpon. Biasanya fihak Telkom memberi anda splitter yang memecah line telpon anda menjadi dua, satu kabel ke modem dan satu kabel lagi ke handset telpon anda. Keduanya bisa berjalan tanpa saling mengganggu karena DSL internet dan voice Telpon menggunakan frequensi yang berbeda.
Gambar berikut menunjukkan bagaimana anda menghubungkan port-port tersebut kepada wireless AP atau wireless router anda. Dari modem ke wireless router anda harus menggunakan kabel jaringan jenis cross cable atau pastinya adalah kabel bawaan dari modem tersebut yang memang jenis cross.
wireless network dengan modem dan access point
Sebelumnya kita perlu melakukan konfigurasi awal pada router tersebut. Gunakan kabel jaringan (biasanya datang bersama router) dan koneksikan salah satu Ethernet (Swicth) port dari router ke NIC port dari salah satu komputer anda. Jalankan CD-ROM instalasi dan ikuti wizard instalasi sesuai buku petunjuknya. Setelah itu koneksikan router ke modem seperti terlihat pada diagram diatas.
Untuk selanjutnya bila memerlukan konfigurasi yang lebih advanced, anda bisa lakukan lewat web-based utility diantaranya memberikan IP address Internet (tentunya dengan bantuan dari ISP anda by phone) dan IP address kepada router anda dan juga konfigurasi DHCP services. DHCP services router by default sudah enable, jadi sebenarnya anda biarkan saja sudah bisa beroperasi. DHCP ini sangat penting buat jaringan anda karena dia akan berfungsi sebagai pemasok konfigurasi IP address kepada semua komputer yang ada pada jaringan anda secara automatis. Lihat juga artikel setup wireless router untuk lebih jelasnya.
Terus Bagaimana Computer Clients Mendapatkan IP Address?
Yang perlu anda lakukan adalah melakukan konfigurasi TCP/IP pada clients computer untuk mendapatkan IP address secara automatis. Pada artikel sebelumnya mengenai jaringan komputer sederhana telah dibahas cara melakukan setup bagaimana mendapatkan IP address secara automatis.
Akan tetapi ada sedikit perbedaan cara melakukan koneksi dari adapter wireless di komputer anda tergantung fitur dari wireless router anda, ada wireless router yang menggunakan wizard untuk koneksi ke router dengan menggunakan fitur security yang didukungnya yang biasanya disebut sebagai Wi-Fi Protected Setup (WPS).
Jika system keamanan dari router tidak diaktifkan maka biasanya anda hanya memerlukan searching nama jaringan wireless (SSID name) dari komputer anda dan jika sudah mengenali jaringan wireless yang ada dengan nama SSID yang ada, anda sudah bisa terhubung kepada jaringan tersebut secara automatis dan anda sudah terhubung langsung.
Akan tetapi jika system keamanan sudah di setup menggunakan wireless security WPA atau WEP , maka anda harus memasukkan account sebagai authenticasi beserta passwordnya. Kedua sisi antara komputer dan wireless router harus sama setting untuk WPA ataupun WEP nya. Selebihnya anda sudah bisa melakukan koneksi dan bisa berbagi internet, file, documents, digital media dan juga printer bahkan anda bisa melakukan game online bersama-sama.

Protokol Routing

Tujuan utama dari routing protokol adalah untuk membangun dan memperbaiki tabel routing. Dimana tabel ini berisi jaringan-jaringan dan interface yang berhubungan dengan jaringan tersebut.
Router menggunakan protokol routing ini untuk mengatur informasi yang diterima dari router-router lain dan interface-nya masing-masing, Sebagaimana yang terjadi di konfigurasi routing secara manual. Routing protokol mempelajari semua router yang ada, menempatkan rute yang terbaik ke tabel routing, dan juga menghapus rute ketika rute tersebut sudah tidak valid lagi.Router menggunakan informasi dalam tabel routing untuk melewatkan paket-paket routed protokol.
Informasi yang terdapat di dalam tabel routing dapat diperoleh melalui perantara administrator (secara manual mengisi tabel routing) atau melalui router atau PC router tetangga yang saling bertukar informasi tabel routing.
Tabel routing pada umumnya berisi informasi tentang :
  • Alamat network tujuan.
  • Interface router atau PC router lokal yang terdekat dengan network tujuan.
  • Metric, yakni sebuah nilai yang menunjukkan jarak untuk mencapai network tujuan.
Parameter-parameter yang biasa digunakan untuk menghasilkan sebuah nilai metric, diantaranya :
  • Hop count, berdasarkan pada banyaknya router atau PC router yang dilewati.
  • Ticks, berdasarkan waktu yang diperlukan dengan satuan waktu ticks.
  • Cost , berdasarkan perbandingan sebuah nilai patokan standard dengan bandwidth yang tersedia.
  • Composite metric, berdasarkan perhitungan dari parameter-parameter lain, yaitu  Bandwidth, Delay, Load, Reliability, MTU (Maximum Transmit Unit)
Dari parameter tersebut tidak selalu digunakan semua Penggunaan dari parameter-parameter tersebut tergantung pada jenis routing protokol yang digunakan oleh router atau PC router dalam memelihara atau membentuk tabel routing.
Pembagian Protokol Routing
Tabel routing tersebut menyimpan informasi mengenai network yang terhubung dengannya (Connected Networks) maupun network yang tidak terhubung dengannya (Remote networks).
Connected networks adalah network yang terhubung dengan salah satu interface pada router. Remote networks adalah network yang tidak terhubung langsung dengan salah interface pada router. Routing Tabel bisa dibentuk dengan berbagai macam cara yaitu dengan Static Routing maupun Dynamic Routing.
Static Routing
Dynamic Routing
Routing diatur secara manual oleh administratorRouting ditentukan oleh protocol routing
Lebih cocok digunakan pada jaringan skala kecilBiasa digunakan pada jaringan skala besar (dari sebuah referensi mengatakan jaringan skala besar memiliki minimal 10 router di dalamnya)
Bila ada link yang putus, maka administrator harus mengeset ulangBila ada link yang putus, maka protocol routing akan mengupdate table routing dan menentukan jalur routing yang baru
Static routing adalah routing tabel yang dibentuk dengan cara di-entry secara manual oleh network administrator, sedangkan Dynamic Routing adalah Routing Tabel yang dibentuk secara otomatis dengan menggunakan dynamic routing protokols.
Dynamic Routing Protokol dibagi kedalam dua kategori yaitu IGP (Interior Gateway Protokol)  dan EGP (Exterior Gateway Protokol).
Exterior Gateway Protokol (EGP) adalah protokol yang melakukan routing antar autonomous systems, contohnya BGP (Border Gateway Protocol)
Interior Gateway Protokols (IGPs) adalah protokol yang melakukan routing di dalam satu autonomous systems.
IGP dibagi ke dalam dua kategori lagi yaitu
  • distance-vector
  • link-state protokols
Distance Vector
Link state
Hanya memiliki 1 Tabel, yaitu Tabel RoutingMemiliki 3 Tabel, yaitu Tabel Routing, Tabel Topologi, dan Tabel Tetangga
Bekerja menggunakan Algoritma Bellman FordBekerja dengan Algoritma Djikstra
Menggunakan sedikit memoriMenggunakan memori yang lebih banyak dibanding Distance Vector
Contoh Protokol Routing Distance Vector :
  • Routing Information Protokol (RIP)
  • Interior Gateway Routing Protokol (IGRP)
Contoh Protokol Routing Link State :
  • Open Shortest Path First (OSPF)
  • Intermediate system to Intermediate system (IS-IS)
sumber: http://imammashari.wordpress.com/2010/09/12/protokol-routing/

Tabel Routing


Hal penting dari “TCP/IP Review” adalah kita tahu bahwa layer Data Link/fisik dan layer Transport/Network pada model OSI melakukan tugas yang mirip: mereka menyediakan cara untuk menyampaikan data dari source ke destination melintasi suatu jalur. Perbedaannya adalah bahwa layer Data Link/fisik menawarkan komunikasi melintasi jalur fisik, sedangkan layer Transport/Network melintasi jalur virtual/logik yang terdiri dari beberapa Data Link.
Kemudian, agar komunikasi yang terjadi melintasi jalur fisik berjalan lancar, beberapa informasi tentang identifier data-link (MAC address) dan proses enkapsulasi harus diperoleh dan kemudian disimpan dalam sebuah database yang disebut ARP cache. Hal yang sama juga terjadi pada jalur logik, untuk dapat melakukan pekerjaannya layer transport/network memerlukan informasi-informasi yang harus didapatkan dan kemudian akan disimpan. Informasi ini disimpan dalam suatu database yang disebut Route Table (tabel routing) yang juga disebut Routing Information Database (RIB).

Tabel routing

Jika sebuah paket harus di arahkan (routed), maka router akan memeriksa tabel routing untuk memperoleh informasi jalur yang tepat. Setiap entri pada tabel routing setidaknya terdiri dari 2 item sebagai berikut :
  • Destination address, adalah address sebuah network yang dapat dijangkau oleh router. Router dapat memiliki satu atau lebih jalur (rute) untuk menuju network yang sama, atau sekelompok subnet dengan panjang subnet bervariasi yang disatukan dibawah address network dengan nomor major yang sama.
  • Pointer to the destination, penunjuk yang mengindikasikan bahwa network tujuan (Destination Address) terhubung langsung dengan router, atau mengindikasikan address router lain yang terhubung pada network tujuan, router yang berada pada satu hop lebih dekat pada destination disebut sebagai router next-hop.
Router akan mencocokkan dengan address yang paling spesifik dalam tabel routing. Urutan kespesifikan suatu entri dalam tabel routing dapat berupa:
  • Host address (a host route)
  • Subnet
  • Group of subnets (a summary route)
  • Major network number
  • Group of major network numbers (a supernet)
  • Default address
Jika address tujuan dari paket tidak ada yang cocok dengan salah satu entri pada tabel routing, maka paket akan di buang (drop) dan kemudian sebuah pesan Destination Unreachable ICMP akan dikirimkan pada address source.
1-tabel-routing
Jika router Carroll menerima paket dengan address pengirim 10.1.1.97 dan address tujuan 10.1.7.35, maka pencarian pada tabel routing menentukan bahwa entri yang paling cocok untuk address tujuan adalah subnet 10.1.7.0, yang dapat dicapai melalui address next-hop 10.1.2.2 (router Dahl) pada interface S0. Paket kemudian dikirimkan pada router Dahl, yang kemudian juga melakukan pencarian pada tabel routing nya dan menemukan bahwa network 10.1.7.0 dapat dicapai melalui address next-hop 10.1.4.2 (router Lewis) pada interface S1. Proses berlanjut terus sampai paket mencapai router Baum. Router Baum ini menerima paket dan kemudian melakukan pencarian pada tabel routing dan menemukan bahwa address tujuan paket adalah salah satu subnet yang terhubung langsung dengannya pada interface E0. Proses Routing telah komplit dan paket dapat diserahkan pada host 10.1.7.35 pada link Ethernet.
Proses routing, seperti yang dijelaskan diatas, mengasumsikan bahwa router dapat mencocokkan address-address next-hop dengan interface yang dimilikinya. Misalnya, router Dahl harus tahu bahwa address 10.1.4.2 (router Lewis) dapat dicapai melalui interface S1. Dahl akan mengetahui dari IP address dan subnet mask yang diberikan pada interface S1 bahwa interface tersebut terhubung langsung dengan subnet 10.1.4.0. Kemudian router tahu bahwa 10.1.4.2 (router Lewis) adalah anggota pada subnet yang sama, seharusnya juga terhubung langsung pada data link yang sama.
Perhatikan bahwa setiap router harus mempunya informasi yang konsisten dan akurat agar pertukaran paket dapat terjadi dengan benar. Misalnya, pada contoh diatas, sebuah entri untuk network 10.1.1.0 tidak berada dalam tabel routing Dahl. Paket dari 10.1.1.97 menuju 10.1.7.35 dapat disampaikan tanpa ada problem, tetapi ketika paket balasan dikirimkan dari 10.1.7.35 ke 10.1.1.97 maka paket akan diserahkan dari Baum kepada Lewis kepada Dahl. Kemudian Dahl melakukan pencarian pada tabel routing dan tidak menemukan entry yang cocok untuk subnet 10.1.1.0, jadi paket akan di drop dan kemudian pesan ICMP Destination Unreachable dikirimkan ke 10.1.7.35.
Lewis#sh ip route
Codes: C – connected, S – static, R – RIP, M – mobile, B – BGP
D – EIGRP, EX – EIGRP external, O – OSPF, IA – OSPF inter area
N1 – OSPF NSSA external type 1, N2 – OSPF NSSA external type 2
E1 – OSPF external type 1, E2 – OSPF external type 2
i – IS-IS, su – IS-IS summary, L1 – IS-IS level-1, L2 – IS-IS level-2
ia – IS-IS inter area, * – candidate default, U – per-user static route
o – ODR, P – periodic downloaded static route
Gateway of last resort is not set
10.0.0.0/24 is subnetted, 7 subnets
S 10.1.3.0 [1/0] via 10.1.4.1
S 10.1.2.0 [1/0] via 10.1.4.1
S 10.1.1.0 [1/0] via 10.1.4.1
S 10.1.7.0 [1/0] via 10.1.6.2
C 10.1.6.0 is directly connected, Serial1/1
C 10.1.5.0 is directly connected, Loopback5
C 10.1.4.0 is directly connected, Serial1/0
Lewis#
Hal-hal penting pada tabel bagian atas menjelaskan setiap huruf yang berada pada bagian kiri tabel. Huruf-huruf ini mengindikasikan bagaimana sebuah entri didapatkan; misalnya, semua entri routing yang diberikan label dengan huruf C mengindikasikan network “directly connected” atau huruf S yang mengindikasikan “static entry“. Pernyataan “Gateway of last resort is not set” mengindikasikan status default route.
Diatas tabel terdapat statement yang menunjukkan bahwa tabel routing mengetahui 7 subnet dari address major network 10.0.0.0, di subnet dengan mask 24-bit. Untuk setiap entri subnet tujuan akan ditampilkan; untuk entri yang tidak terhubung langsung, akan ditampilkan address dari router next-hop dimana paket akan diforward. Tanda kurung siku mengindikasikan [administrative distance/metric] untuk jalur/rute tersebut.

Perbedaan Static Routing dan Dinamyc Routing


• Static Routing
Router meneruskan paket dari sebuah network ke network yang lainnya berdasarkan rute(catatan: seperti rute pada bis kota) yang ditentukan oleh administrator. Rute pada static routing tidak berubah, kecuali jika diubah secara manual oleh administrator.
Static routing dikonfigurasi secara manual. Routing tabelnya diset manual dan disimpan dalam router. Tidak ada informasi sharing diantara sesama router. Hal ini mengakibatkan keterbatasan yang jelas karena ia tidak dapat secara otomatis menentukan route terbaik; ia selalu menggunakan rute yang sama yang kemungkinan bukan rute terbaik. Jika route berubah, static router harus diupdate secara manual. Karena static router menyediakan control penuh pada routing tabelnya, ia lebih aman dibanding dynamic router.
• Dynamic Routing
Router mempelajari sendiri Rute yang terbaik yang akan ditempuhnya untuk meneruskan paket dari sebuah network ke network lainnya. Administrator tidak menentukan rute yang harus ditempuh oleh paket-paket tersebut. Administrator hanya menentukan bagaimana cara router mempelajari paket, dan kemudian router mempelajarinya sendiri. Rute pada dynamic routing berubah, sesuai dengan pelajaran yang didapatkan oleh router.
Dynamic routing mampu membuat routing tabelnya sendiri dengan berbicara ke sesama router. Untuk melakukannya ia menemukan route dan route alternatif yang berada pada network. Dynamic router bisa membuat keputusan pada route yang mana sebuah paket mencapai tujuan. Umumnya ia mengirimkan paket ke route yang paling efisien; salah satu yang menghasilkan jumlah hop lebih sedikit. Bagaimanapun, jika route macet,dynamic route dapat mengirimkan paket ke route alternatif.
Distance Vector
Algoritma routing distance vector secara periodik menyalin table routing dari router ke router. Perubahan table routing ini di-update antar router yang saling berhubungan pada saat terjadi perubahan topologi. Algoritma distance vector juga disebut dengan algoritma Bellman-Ford.
Setiap router menerima table routing dari router tetangga yang terhubung langsung. Pada gambar di bawah ini digambarkan konsep kerja dari distance vector.
Gambar konsep distance vector

Router B menerima informasi dari Router A. Router B menambahkan nomor distance vector, seperti jumlah hop. Jumlah ini menambahkan distance vector. Router B melewatkan table routing baru ini ke router-router tetangganya yang lain, yaitu Router C. Proses ini akan terus berlangsung untuk semua router.
Algoritma ini mengakumulasi jarak jaringan sehingga dapat digunakan untuk memperbaiki database informasi mengenai topologi jaringan. Bagaimanapun, algoritma distance vector tidak mengijinkan router untuk mengetahui secara pasti topologi internetwork karena hanya melihat router-router tetangganya.
Setiap router yang menggunakan distance vector pertama kali mengidentifikasi router-router tetangganya. Interface yang terhubung langsung ke router tetangganya mempunyai distance 0. Router yang menerapkan distance vector dapat menentukan jalur terbaik untuk menuju ke jaringan tujuan berdasarkan informasi yang diterima dari tetangganya. Router A mempelajari jaringan lain berdasarkan informasi yang diterima dari router B. Masing-masing router lain menambahkan dalam table routingnya yang mempunyai akumulasi distance vector untuk melihat sejauh mana jaringan yang akan dituju. Seperti yang dijelakan oleh gambar berikut ini:
Gambar jaringan distance vector discovery

Analogi distance vector dapat digambarkan dengan jalan tol. Tanda yang menunjukkan titik menuju ke tujuan dan menunjukkan jarak ke tujuan. Dengan adanya tanda-tanda seperti itu pengendara dengan mudah mengetahui perkiraan jarak yang akan ditempuh untuk mencapai tujuan. Dalam hal ini jarak terpendek adalah rute yang terbaik.

Link State Routing
Algoritma link-state juga dikenal dengan algoritma Dijkstra atau algoritma shortest path first (SPF). Algoritma ini memperbaiki informasi database dari informasi topologi. Algoritma distance vector memiliki informasi yang tidak spesifik tentang distance network dan tidak mengetahui jarak router. Sedangkan algortima link-state memperbaiki pengetahuan dari jarak router dan bagaimana mereka inter-koneksi.
Fitur-fitur yang dimiliki oleh routing link-state adalah:
• Link-state advertisement (LSA) – adalah paket kecil dari informasi routing yang dikirim antar router .
• Topological database – adalah kumpulan informasi yang dari LSA-LSA.
• SPF algorithm – adalah hasil perhitungan pada database sebagai hasil dari pohon SPF.
• Routing table – adalah daftar rute dan interface
Gambar konsep link-state

Proses discovery dari routing link-state
Ketika router melakukan pertukaran LSA, dimulai dengan jaringan yang terhubung langsung tentang informasi yang mereka miliki. Masing-masing router membangun database topologi yang berisi pertukaran informasi LSA.
Algoritma SPF menghitung jaringan yang dapat dicapai. Router membangun logical topologi sebagai pohon (tree), dengan router sebagai root. Topologi ini berisi semua rute-rute yang mungkin untuk mencapai jaringan dalam protokol link-state internetwork. Router kemudian menggunakan SPF untuk memperpendek rute. Daftar rute-rute terbaik dan interface ke jaringan yang dituju dalam table routing. Link-state juga memperbaiki database topologi yang lain dari elemen-elemen topologi dan status secara detail.
Gambar jaringan link-state discovery

Ada beberapa titik berat yang berhubungan dengan protokol link-state:
• Processor overhead
• Kebutuhan memori
• Konsumsi bandwidth
Router-router yang menggunakan protokol link-state membutuhkan memori lebih dan proses data yang lebih daripada router-router yang menggunakan protokol distance vector. Router link-state membutuhkan memori yang cukup untuk menangani semua informasi dari database, pohon topologi dan table routing. Gambar di bawah menunjukkan inisialisasi paket flooding link-state yang mengkonsumsi bandwidth. Pada proses inisial discovery, semua router yang menggunakan protokol routing link-state mengirimkan paket LSA ke semua router tetangganya. Peristiwa ini menyebabkan pengurangan bandwidth yang tersedia untuk me-routing trafik yang membawa data user. Setelah inisial flooding ini, protokol routing link-state secara umum membutuhkan bandwidth minimal untuk mengirim paket-paket LSA yang menyebabkan perubahan topologi.

Protokol Routing
Pada layer internet TCP/IP, router dapat menggunakan protokol routing untuk membentuk routing melalui suatu algoritma yang meliputi:
• RIP – menggunakan protokol routing interior dengan algoritma distance vector
• IGRP – menggunakan protokol routing interior dengan algoritma Cisco distance vector
• OSPF – menggunakan protokol routing interior dengan algoritma link-state
• EIGRP – menggunakan protokol routing interior dengan algoritma advanced Cisco distance vector
• BGP – menggunakan protokol routing eksterior dengan algoritma distance vector
RIP
Routing Information Protocol (RIP) adalah sebuah routing protocol jenis distance-vector, dimana RIP mengirimkan routing table yang lengkap ke semua interface yang aktif setiap 30 detik. RIP hanya menggunakan jumlah hop untuk menentukan cara terbaik ke sebuah network remote , tetapi RIP secara default memiliki sejumah nilai jumlah hop maksimum yang diizinkan, yaitu 15 yang berarti 16 dianggab tidak terjangkau (unreachable).

RIP versi 1 menggunakan hanya classful routing, yang berarti semua alat di network harus menggunakan subnet mask yang sama. RIP versi 2 menyediakan sesuatu yang disebut prefix routing, dan bisa mengirimkan informasi subnet mask bersama dengan update-update dari route (classless routing).
RIP adalah routing vektor jarak-protokol, yang mempekerjakan hop sebagai metrik routing. Palka down time adalah 180 detik. RIP mencegah routing loop dengan menerapkan batasan pada jumlah hop diperbolehkan dalam path dari sumber ke tempat tujuan. Jumlah maksimum hop diperbolehkan untuk RIP adalah 15. Batas hop ini, bagaimanapun, juga membatasi ukuran jaringan yang dapat mendukung RIP. Sebuah hop 16 adalah dianggap jarak yang tak terbatas dan digunakan untuk mencela tidak dapat diakses, bisa dioperasi, atau rute yang tidak diinginkan dalam proses seleksi.
Awalnya setiap RIP router ditularkan pembaruan penuh setiap 30 detik. Pada awal penyebaran, tabel routing cukup kecil bahwa lalu lintas tidak signifikan. Seperti jaringan tumbuh dalam ukuran, bagaimanapun, itu menjadi nyata mungkin ada lalu lintas besar-besaran meledak setiap 30 detik, bahkan jika router sudah diinisialisasi secara acak kali. Diperkirakan, sebagai akibat dari inisialisasi acak, routing update akan menyebar dalam waktu, tetapi ini tidak benar dalam praktik. Sally Floyd dan Van Jacobson menunjukkan pada tahun 1994 bahwa, tanpa sedikit pengacakan dari update timer, penghitung waktu disinkronkan sepanjang waktu dan mengirimkan update pada waktu yang sama. Implementasi RIP modern disengaja memperkenalkan variasi ke update timer interval dari setiap router.
RIP mengimplementasikan split horizon, rute holddown keracunan dan mekanisme untuk mencegah informasi routing yang tidak benar dari yang disebarkan. Ini adalah beberapa fitur stabilitas RIP.
Dalam kebanyakan lingkungan jaringan saat ini, RIP bukanlah pilihan yang lebih disukai untuk routing sebagai waktu untuk menyatu dan skalabilitas miskin dibandingkan dengan EIGRP, OSPF, atau IS-IS (dua terakhir yang link-state routing protocol), dan batas hop parah membatasi ukuran jaringan itu dapat digunakan in Namun, mudah untuk mengkonfigurasi, karena RIP tidak memerlukan parameter pada sebuah router dalam protokol lain oposisi.
RIP dilaksanakan di atas User Datagram Protocol sebagai protokol transport. Menggunakan port 520.Ada tiga versi dari Routing Information Protocol: RIPv1, RIPv2, dan RIPng.
RIP versi 1
Spesifikasi asli RIP, didefinisikan dalam RFC 1058, classful menggunakan routing. Update routing periodik tidak membawa informasi subnet, kurang dukungan untuk variable length subnet mask (VLSM). Keterbatasan ini tidak memungkinkan untuk memiliki subnet berukuran berbeda dalam kelas jaringan yang sama. Dengan kata lain, semua subnet dalam kelas jaringan harus memiliki ukuran yang sama. Juga tidak ada dukungan untuk router otentikasi, membuat RIP rentan terhadap berbagai serangan.
RIP versi 2
Karena kekurangan RIP asli spesifikasi, RIP versi 2 (RIPv2) dikembangkan pada tahun 1993 dan standar terakhir pada tahun 1998. Ini termasuk kemampuan untuk membawa informasi subnet, sehingga mendukung Classless Inter-Domain Routing (CIDR). Untuk menjaga kompatibilitas, maka batas hop dari 15 tetap. RIPv2 memiliki fasilitas untuk sepenuhnya beroperasi dengan spesifikasi awal jika semua protokol Harus Nol bidang dalam pesan RIPv1 benar ditentukan. Selain itu, aktifkan kompatibilitas fitur memungkinkan interoperabilitas halus penyesuaian.

Dalam upaya untuk menghindari beban yang tidak perlu host yang tidak berpartisipasi dalam routing, RIPv2 multicasts seluruh tabel routing ke semua router yang berdekatan di alamat 224.0.0.9, sebagai lawan dari RIP yang menggunakan siaran unicast. Pengalamatan unicast masih diperbolehkan untuk aplikasi khusus. (MD5) otentikasi RIP diperkenalkan pada tahun 1997. RIPv2 adalah Standar Internet STD-56.
RIPng

RIPng (RIP generasi berikutnya), yang didefinisikan dalam RFC 2080, adalah perluasan dari RIPv2 untuk mendukung IPv6, generasi berikutnya Internet Protocol. Perbedaan utama antara RIPv2 dan RIPng adalah :
• Dukungan dari jaringan IPv6.
• Sementara RIPv1 update RIPv2 mendukung otentikasi, RIPng tidak. IPv6 router itu, pada saat itu, seharusnya menggunakan IP Security untuk otentikasi.
• Melampirkan RIPv2 memungkinkan tag ke rute yang sewenang-wenang, tidak RIPng
• RIPv2 encode-hop berikutnya ke setiap rute entri, RIPng membutuhkan penyandian tertentu hop berikutnya untuk satu set rute entri.
IGRP
Interior Gateway routing Protocol atau yang biasa dikenal dengan sebutan IGRP merupakan suatu protokol jaringan kepemilikan yang mengembangkan sistem Cisco yang dirancang pada sistem otonomi untuk menyediakan suatu alternatif RIP (Routing Information Protocol). IGRP merupakan suatu penjaluran jarak antara vektor protokol, bahwa masing-masing penjaluran bertugas untuk mengirimkan semua atau sebagian dari isi table penjaluran dalam penjaluran pesan untuk memperbaharui pada waktu tertentu untuk masing-masing penjaluran. Penjaluran memilih alur yang terbaik antara sumber dan tujuan. Untuk menyediakan fleksibilitas tambahan, IGRP mengijinkan untuk melakukan penjaluran multipath. Bentuk garis equal bandwidth dapat menjalankan arus lalu lintas dalam round robin, dengan melakukan peralihan secara otomatis kepada garis kedua jika sampai garis kesatu turun.
Operasi IGRP
Masing-masing penjaluran secara rutin mengirimkan masing-masing jaringan lokal kepada suatu pesan yang berisi salinan tabel penjaluran dari tabel lainnya. Pesan ini berisi tentang biaya-biaya dan jaringan yang akan dicapai untuk menjangkau masing-masing jaringan tersebut. Penerima pesan penjaluran dapat menjangkau semua jaringan didalam pesan sepanjang penjaluran yang bisa digunakan untuk mengirimkan pesan.
Tujuan dari IGRP yaitu:
• Penjaluran stabil dijaringan kompleks sangat besar dan tidaka ada pengulangan penjaluran.
• Overhead rendah, IGRP sendiri tidak menggunakan bandwidth yang diperlukan untuk tugasnya.
• Pemisahan lalu lintas antar beberapa rute paralel.
• Kemampuan untuk menangani berbagai jenis layanan dengan informasi tunggal.
• Mempertimbangkan menghitung laju kesalahan dan tingkat lalu lintas pada alur yang berbeda.
Karakteristik Protokol IGRP
• Jarak-vektor routing protokol panggilan untuk setiap router mengirim semua atau sebagian dari tabel routing dalam pesan routing-update secara berkala untuk masing-masing router tetangganya. Sebagai routing berproliferasi informasi melalui jaringan, router dapat menghitung jarak ke semua node dalam internetwork.
• Jarak-vector routing protocol yang sering dibandingkan dengan protokol link-state routing, yang mengirimkan informasi koneksi lokal ke semua node dalam internetwork Untuk diskusi tentang Open Shortest Path First (OSPF) dan Intermediate System-to-Intermediate System (IS-IS), dua algoritma link popular state routing, lihat masing-masing "Open Shortest Path First (OSPF)," dan "Open System Interconnection ( OSI) Protokol, ".
• IGRP menggunakan kombinasi (vektor) dari metrik. Internetwork delay, bandwidth, keandalan, dan beban semua faktor dalam keputusan routing. Administrator jaringan dapat mengatur faktor-faktor bobot untuk masing-masing metrik. IGRP menggunakan baik administrator-set atau bobot default untuk secara otomatis menghitung rute yang optimal.
• IGRP menyediakan berbagai untuk metrik-nya. Kehandalan dan beban, misalnya, dapat mengambil pada setiap nilai antara 1 dan 255; bandwidth dapat mengambil nilai-nilai yang mencerminkan kecepatan dari 1.200 bps menjadi 10 gigabit per detik, sedangkan keterlambatan dapat mengambil nilai apapun dari 1 ke 2 dengan daya 24. Wide berkisar metrik memungkinkan pengaturan metrik memuaskan dalam internetwork dengan sangat beragam karakteristik kinerja. Yang terpenting, komponen metrik digabungkan dalam algoritma pengguna ditentukan. Akibatnya, administrator jaringan dapat mempengaruhi pilihan rute dalam mode intuitif.
• Untuk menyediakan fleksibilitas tambahan, IGRP izin multipath routing. Dual sama-bandwidth baris dapat menjalankan aliran tunggal lalu lintas dalam mode round-robin, dengan peralihan otomatis ke baris kedua jika satu baris turun. Juga, beberapa jalur bisa digunakan bahkan jika metrik untuk jalan berbeda. Jika, misalnya, satu jalur adalah tiga kali lebih baik daripada yang lain karena metrik-nya adalah tiga kali lebih rendah, jalan yang lebih baik akan digunakan tiga kali lebih sering. Hanya rute dengan metrik yang berada dalam kisaran tertentu dari rute terbaik digunakan sebagai jalur ganda.

OSPF
OSPF merupakan sebuah routing protokol berjenis IGP yang hanya dapat bekerja dalam jaringan internal suatu ogranisasi atau perusahaan. Jaringan internal maksudnya adalah jaringan di mana Anda masih memiliki hak untuk menggunakan, mengatur, dan memodifikasinya. Atau dengan kata lain, Anda masih memiliki hak administrasi terhadap jaringan tersebut. Jika Anda sudah tidak memiliki hak untuk menggunakan dan mengaturnya, maka jaringan tersebut dapat dikategorikan sebagai jaringan eksternal. Selain itu, OSPF juga merupakan routing protokol yang berstandar terbuka. Maksudnya adalah routing protokol ini bukan ciptaan dari vendor manapun. Dengan demikian, siapapun dapat menggunakannya, perangkat manapun dapat kompatibel dengannya, dan di manapun routing protokol ini dapat diimplementasikan. OSPF merupakan routing protokol yang menggunakan konsep hirarki routing, artinya OSPF membagi-bagi jaringan menjadi beberapa tingkatan. Tingkatan-tingkatan ini diwujudkan dengan menggunakan sistem pengelompokan area.
Dengan menggunakan konsep hirarki routing ini sistem penyebaran informasinya menjadi lebih teratur dan tersegmentasi, tidak menyebar ke sana ke mari dengan sembarangan. Efek dari keteraturan distribusi routing ini adalah jaringan yang penggunaan bandwidth-nya lebih efisien, lebih cepat mencapai konvergensi, dan lebih presisi dalam menentukan rute-rute terbaik menuju ke sebuah lokasi. OSPF merupakan salah satu routing protokol yang selalu berusaha untuk bekerja demikian. Teknologi yang digunakan oleh routing protokol ini adalah teknologi linkstate yang memang didesain untuk bekerja dengan sangat efisien dalam proses pengiriman update informasi rute. Hal ini membuat routing protokol OSPF menjadi sangat cocok untuk terus dikembangkan menjadi network berskala besar. Pengguna OSPF biasanya adalah para administrator jaringan berskala sedang sampai besar. Jaringan dengan jumlah router lebih dari sepuluh buah, dengan banyak lokasi-lokasi remote yang perlu juga dijangkau dari pusat, dengan jumlah pengguna jaringan lebih dari lima ratus perangkat komputer, mungkin sudah layak menggunakan routing protocol ini.

Cara OSPF Membentuk Hubungan dengan Router Lain
Untuk memulai semua aktivitas OSPF dalam menjalankan pertukaran informasi routing, hal pertama yang harus dilakukannya adalah membentuk sebuah komunikasi dengan para router lain. Router lain yang berhubungan langsung atau yang berada di dalam satu jaringan dengan router OSPF tersebut disebut dengan neighbour router atau router tetangga. Langkah pertama yang harus dilakukan sebuah router OSPF adalah harus membentuk hubungan dengan neighbor router. Router OSPF mempunyai sebuah mekanisme untuk dapat menemukan router tetangganya dan dapat membuka hubungan. Mekanisme tersebut disebut dengan istilah Hello protocol. Dalam membentuk hubungan dengan tetangganya, router OSPF akan mengirimkan sebuah paket berukuran kecil secara periodik ke dalam jaringan atau ke sebuah perangkat yang terhubung langsung dengannya. Paket kecil tersebut dinamai dengan istilah Hello packet. Pada kondisi standar, Hello packet dikirimkan berkala setiap 10 detik sekali (dalam media broadcast multiaccess) dan 30 detik sekali dalam media Point-to-Point. Hello packet berisikan informasi seputar pernak-pernik yang ada pada router pengirim. Hello packet pada umumnya dikirim dengan menggunakan multicast address untuk menuju ke semua router yang menjalankan OSPF (IP multicast 224.0.0.5). Semua router yang menjalankan OSPF pasti akan mendengarkan protocol hello ini dan juga akan mengirimkan hello packet-nya secara berkala. Cara kerja dari Hello protocol dan pembentukan neighbour router terdiri dari beberapa jenis, tergantung dari jenis media di mana router OSPF berjalan.

EIGRP
Enhanced Interior Gateway Routing Protocol ( EIGRP ) adalah sebuah protocol proprietary (milik ) Cisco yang bekerja pada router Cisco dan pada prosesor-prosesor route internal yang terdapat pada switch layer core dan switch layer distributor Cisco.
Kelebihan utama yang membedakan EIGRP dari protokol routing lainnya adalah EIGRP termasuk satu-satunya protokol routing yang menawarkan fitur backup route, dimana jika terjadi perubahan pada network, EIGRP tidak harus melakukan kalkulasi ulang untuk menentukan route terbaik karena bisa langsung menggunakan backup route. Kalkulasi ulang route terbaik dilakukan jika backup route juga mengalami kegagalan. Berikut adalah fitur-fitur yang dimiliki EIGRP:
• Termasuk protokol routing distance vector tingkat lanjut (Advanced distance vector).
• Waktu convergence yang cepat.
• Mendukung VLSM dan subnet-subnet yang discontiguous (tidak bersebelahan/berurutan)
• Partial updates, Tidak seperti RIP yang selalu mengirimkan keseluruhan tabel routing dalam pesan Update, EIGRP menggunakan partial updates atau triggered update yang berarti hanya mengirimkan update jika terjadi perubahan pada network (mis: ada network yang down)
• Mendukung multiple protokol network
• Desain network yang flexible.
• Multicast dan unicast, EIGRP saling berkomunikasi dengan tetangga (neighbor) nya secara multicast (224.0.0.10) dan tidak membroadcastnya.
• Manual summarization, EIGRP dapat melakukan summarization dimana saja.
• Menjamin 100% topologi routing yang bebas looping.
• Mudah dikonfigurasi untuk WAN dan LAN.
• Load balancing via jalur dengan cost equal dan unequal, yang berarti EIGRP dapat menggunakan 2 link atau lebih ke suatu network destination dengan koneksi bandwidth (cost metric) yang berbeda, dan melakukan load sharing pada link-link tersebut dengan beban yang sesuai yang dimiliki oleh link masing-masing, dengan begini pemakaian bandwidth pada setiap link menjadi lebih efektif, karena link dengan bandwidth yang lebih kecil tetap digunakan dan dengan beban yang sepadan juga
EIGRP mengkombinasikan kelebihan-kelebihan yang dimiliki oleh protokol routing link-state dan distance vector. Tetapi pada dasarnya EIGRP adalah protokol distance vector karena router-router yang menjalankan EIGRP tidak mengetahui road map/ topologi network secara menyeluruh seperti pada protokol link-state.
EIGRP mudah dikonfigurasi seperti pendahulunya (IGRP) dan dapat diadaptasikan dengan variasi topologi network. Penambahan fitur-fitur protokol link-state seperti neighbor discovery membuat EIGRP menjadi protokol distance vector tingkat lanjut.
EIGRP menggunakan algoritma DUAL (Diffusing Update Algorithm) sebagai mesin utama yang menjalankan lingkungan EIGRP, DUAL dapat diperbandingkan dengan algoritma SPF Dijkstra pada OSPF.
EIGRP memiliki fitur-fitur utama sebagai berikut.
• Partial updates: EIGRP tidak mengirimkan update secara periodik seperti yang dilakukan oleh RIP, tetapi EIGRP mengirimkan update hanya jika terjadi perubahan route/metric (triggered update). Update yang dikirimkan hanya berisi informasi tentang route yang mengalami perubahan saja. Pengiriman pesan update ini juga hanya ditujukan sebatas pada router-router yang membutuhkan informasi perubahan tersebut saja. Hasilnya EIGRP menghabiskan bandwidth yang lebih sedikit daripada IGRP. Hal ini juga membedakan EIGRP dengan protokol link-state yang mengirimkan update kepada semua router dalam satu area.
• Multiple network-layer protocol support: EIGRP mendukung protokol IP, AppleTalk, dan Novell NetWare IPX dengan memanfaatkan module-module yang tidak bergantung pada protokol tertentu.
Fitur EIGRP lain yang patut diperhatikan adalah sebagai berikut:
• Koneksi dengan semua jenis data link dan topologi tanpa memerlukan konfigurasi lebih lanjut, protokol routing lain seperti OSPF, menggunakan konfigurasi yang berbeda untuk protokol layer 2 (Data Link) yang berbeda, misalnya Ethernet dan Frame Relay. EIGRP beroperasi dengan efektif pada lingkungan LAN dan WAN. Dukungan WAN untuk link point-to-point dan topologi nonbroadcast multiaccess (NBMA) merupakan standar EIGRP.
• Metric yang canggih: EIGRP menggunakan algoritma yang sama dengan IGRP untuk menghitung metric tetapi menggambarkan nilai-nilai dalam format 32-bit. EIGRP mendukung load balancing untuk metric yang tidak seimbang (unequal), yang memungkinkan engineer untuk mendistribusikan traffik dalam network dengan lebih baik.
• Multicast and unicast: EIGRP menggunakan multicast dan unicast sebagai ganti broadcast. Address multicast yang digunakan adalah 224.0.0.10.
Dibalik Proses dan Teknologi EIGRP
EIGRP menggunakan 4 teknologi kunci yang berkombinasi untuk membedakan EIGRP dengan protokol routing yang lainnya: neighbor discovery/recovery, reliable transport protocol (RTP), DUAL finitestate machine, dan protocol-dependent modules.
• Neighbor discovery/recovery
 Menggunakan paket hello antar neighbor.
• Reliable Transport Protocol (RTP)
 Pengiriman paket yang terjamin dan terurut kepada semua neighbor.
• DUAL finite-state machine
 Memilih jalur dengan cost paling rendah dan bebas looping untuk mencapai destination.
• Protocol-dependent module (PDM)
 EIGRP dapat mendukung IP, AppleTalk, dan Novell NetWare.
o Setiap protokol disediakan modul EIGRP tersendiri dan beroperasi tanpa saling mempengaruhi satu sama lain.
Neighbor discovery/recovery mechanism: teknologi ini memungkinkan router untuk dapat mengenali setiap neighbor pada network yang terhubung langsung secara dinamik. Router juga harus mengetahui jika ada salah satu neighbor yang mengalami kegagalan dan tidak dapat dijangkau lagi (unreachable). Proses ini dapat diwujudkan dengan pengiriman paket hello yang kecil secara periodik. Selama router menerima paket hello dari router neighbor, maka router akan mengasumsikan bahwa router neighbor berfungsi dengan normal dan keduanya dapat bertukar informasi routing.
RTP: Bertanggung jawab atas pengiriman paket-paket kepada neighbor yang terjamin dan terurut. RTP mendukung transmisi campuran antara paket multicast dan unicast. Untuk tujuan efisiensi, hanya paket EIGRP tertentu yang dikirim menggunakan teknologi RTP.
DUAL finite state machine: mewujudkan proses penentuan untuk semua komputasi route. DUAL melacak semua route yang di advertise oleh setiap neighbor dan menggunakan metric untuk menentukan jalur paling effisien dan bebas looping ke semua network tujuan.
Protocol-dependent modules (PDM): bertanggung jawab untuk keperluan layer network protokol-protokol tertentu. EIGRP mendukung IP, AppleTalk, dan Novell NetWare; setiap protokol tersebut telah disediakan module EIGRP nya masing-masing dan satu sama lain beroperasi secara independent. Module IP-EIGRP misalnya, bertanggung jawab untuk pengiriman dan penerimaan paket-paket EIGRP yang telah di enkapsulasi dalam IP.
Cara Kerja EIGRP
Istilah-istilah algoritma DUAL
• Memilih jalur/route untuk mencapai suatu network dengan ongkos paling rendah, dan bebas looping.
• AD (advertised distance), menggambarkan seberapa jauh sebuah network dari neighbor, merupakan ongkos (metric) antara router next-hop dengan network destination.
• FD (feasible distance), menggambarkan seberapa jauh sebuah network dari router, merupakan ongkos (metric) antara router dengan router next-hop ditambah dengan AD dari router next-hop.
• Ongkos paling rendah = FD paling rendah.
• Successor, adalah jalur utama untuk mencapai suatu network (route terbaik), merupakan router next-hop dengan Ongkos paling rendah dan jalur bebas looping.
• Feasible Successor, adalah jalur backup dari successor (AD dari feasible successor harus lebih kecil daripada FD dari successor)
EIGRP menggunakan dan memelihara 3 jenis tabel. Tabel neighbor untuk mendaftar semua router neighbor, tabel topologi untuk mendaftar semua entri route untuk setiap network destination yang didapatkan dari setiap neighbor, dan tabel routing yang berisi jalur/route terbaik untuk mencapai ke setiap destination.
Table Neighbor
1. neighbor-table
Ketika router menemukan dan menjalin hubungan adjacency (ketetanggaan) dengan neighbor baru, maka router akan menyimpan address router neighbor beserta interface yang dapat menghubungkan dengan neighbor tersebut sebagai satu entri dalam tabel neighbor. Tabel neighbor EIGRP dapat diperbandingkan dengan database adjacency yang digunakan oleh protokol routing link-state yang keduanya mempunyai tujuan yang sama: untuk melakukan komunikasi 2 arah dengan setiap neighbor yang terhubung langsung.
Ketika neighbor mengirimkan paket hello, ia akan menyertakan informasi hold time, yakni total waktu sebuah router dianggap sebagai neighbor yang dapat dijangkau dan operasional. Jika paket hello tidak diterima sampai hold time berakhir, algoritma DUAL akan menginformasikan terjadinya perubahan topologi.
Topology Table
2. topology-table
Ketika router menemukan neighbor baru, maka router akan mengirimkan sebuah update mengenai route-route yang ia ketahui kepada neighbor baru tersebut dan juga sebaliknya menerima informasi yang sama dari neighbor. Update-update ini lah yang akan membangun tabel topologi. Tabel topologi berisi informasi semua network destination yang di advertise oleh router neighbor. Jika neighbor meng advertise route ke suatu network destination, maka neighbor tersebut harus menggunakan route tersebut untuk memforward paket.
Tabel topologi di update setiap kali ada perubahan pada network yang terhubung langsung atau pada interface atau ada pemberitahuan perubahan pada suatu jalur dari router neighbor.
Entri pada tabel topologi untuk suatu destination dapat berstatus active atau passive. Destination akan berstatus passive jika router tidak melakukan komputasi ulang, dan berstatus active jika router masih melakukan komputasi ulang. Jika selalu tersedia feasible successor maka destination tidak akan pernah berada pada status active dan terhindar dari komputasi ulang. Status yang diharapkan untuk setiap network destination adalah status passive.
Routing table
3. routing-table
Router akan membandingkan semua FD untuk mencapai network tertentu dan memilih jalur/route dengan FD paling rendah dan meletakkannya pada tabel routing; jalur/route inilah yang disebut successor route. FD untuk jalur/route yang terpilih akan menjadi metric EIGRP untuk mencapai network tersebut dan disertakan dalam tabel routing.
Paket-Paket EIGRP
EIGRP saling berkomunikasi dengan tetangga (neighbor) nya secara multicast (224.0.0.10) dan menggunakan 5 jenis pesan (message) dalam berhubungan dengan neighbornya:
• Hello: Router-Router menggunakan paket Hello untuk menjalin hubungan neighbor. Paket-paket dikirimkan secara multicast dan tidak membutuhkan.
• Update: Untuk mengirimkan update informasi routing. Tidak seperti RIP yang selalu mengirimkan keseluruhan tabel routing dalam pesan Update, EIGRP menggunakan triggered update yang berarti hanya mengirimkan update jika terjadi perubahan pada network (mis: ada network yang down). Paket update berisi informasi perubahan jalur/route. Update-update ini dapat berupa unicast untuk router tertentu atau multicast untuk beberapa router yang terhubung.
• Query: Untuk menanyakan suatu route kepada tetangga. Biasanya digunakan saat setelah terjadi kegagalan/down pada salah satu route network, dan tidak terdapat feasible successor untuk route/jalur tersebut. router akan mengirimkan pesan Query untuk memperoleh informasi route alternatif untuk mencapai network tersebut, biasanya dalam bentuk multicast tapi bisa juga dalam bentuk unicast untuk beberapa kasus tertentu.
• Reply: Respon dari pesan Query.
• ACK: Untuk memberikan acknowledgement (pengakuan/konfirmasi) atas pesan Update, Query, dan Reply.
Metric EIGRP
Protokol routing digolong-golongkan berdasarkan cara mereka memilih jalur terbaik dan cara mereka menghitung metric suatu jalur (route). Metric adalah suatu ukuran yang digunakan untuk menentukan nilai cost dari suatu route menuju network tertentu. Semakin kecil metric suatu route network semakin bagus dan akan menjadi pilihan utama dalam pemilihan route terbaik.
EIGRP menggunakan komponen-komponen metric yang sama seperti pada IGRP: delay, bandwidth, reliability, load, dan maximum transmission unit (MTU).
EIGRP menggukaan gabungan metric yang sama seperti pada IGRP untuk menentukan jalur terbaik, hanya saja metric EIGRP dikalikan 256. EIGRP secara default hanya menggunakan 2 kriteria metric berikut:
• Bandwidth.
• Delay: total lama delay interface sepanjang jalur.
Kriteria berikut bisa dipakai, tetapi tidak direkomendasikan karena dapat menimbulkan kalkulasi ulang yang terlalu sering pada tabel topologi:
• Reliability.
• Loading.
• MTU.
BGP
Border Gateway Protocol disingkat BGP adalah inti dari protokol routing Internet. Protocol ini yang menjadi backbone dari jaringan Internet dunia. BGP adalah protokol routing inti dari Internet yg digunakan untuk melakukan pertukaran informasi routing antar jaringan. BGP dijelaskan dalam RFC 4271. RFC 4276 menjelaskan implementasi report pada BGP-4, RFC 4277 menjelaskan hasil ujicoba penggunaan BGP-4. Ia bekerja dengan cara memetakan sebuah tabel IP network yang menunjuk ke jaringan yg dapat dicapai antar Autonomous System (AS). Hal ini digambarkan sebagai sebuah protokol path vector. BGP tidak menggunakan metrik IGP (Interior Gateway Protocol) tradisional, tapi membuat routing decision berdasarkan path, network policies, dan atau ruleset. BGP versi 4 masih digunakan hingga saat ini . BGP mendukung Class Inter-Domain Routing dan menggunakan route aggregation untuk mengurangi ukuran tabel routing. sejak tahun 1994, BGP-4 telah digunakan di Internet. semua versi dibawahnya sudah tidak digunakan. BGP diciptakan untuk menggantikan protokol routing EGP yang mengijinkan routing secara tersebar sehingga tidak harus mengacu pada satu jaringan backbone saja.
BGP merupakan satu-satunya routing protocol yang dapat digunakan untuk menghubungkan dua organisasi besar yang berbeda kepentingan. Meskipun routing protocol jenis EGP bukan hanya BGP saja, namun tampaknya BGP sudah menjadi standar internasional untuk keperluan ini.
Hal ini dikarenakan BGP memiliki fitur-fitur yang luar biasa banyak dan fleksibel.
Mulai dari pengaturan frekuensi routing update, sistem pembangunan hubungan dengan AS tetangga, sistem hello, policy-policy penyebaran informasi routing, dan banyak lagi fitur lain yang dapat Anda modifikasi dan utak-atik sendiri sesuai dengan selera.
Maka dari itu BGP merupakan routing protocol yang dapat dikontrol sebebasbebasnya oleh pengguna. Dengan demikian, banyak sekali kebutuhan yang dapat terpenuhi dengan menggunakan BGP.
BGP juga sangat tepat jika sebuah perusahaan memiliki jalur menuju internet yang berjumlah lebih dari satu. Kondisi jaringan dimana memiliki jalur keluar lebih dari satu buah ini sering disebut dengan istilah multihoming. Jaringan multihoming pada umumnya adalah jaringan berskala sedang sampai besar seperti misalnya ISP, bank, perusahaan minyak multinasional, dan banyak lagi. Biasanya jaringan ini memiliki blok IP dan nomor AS sendiri.
Peranan BGP dalam jaringan multihoming ini sangat besar. Pertama, BGP akan berperan sebagai routing protocol yang melakukan pertukaran routing dengan ISP atau NAP yang berada di atas jaringan ini. Kedua, BGP dengan dipadukan oleh pengaturan policy-policynya yang sangat fleksibel dapat membuat sistem load balancing traffic yang keluar masuk.
Selain itu, BGP juga merupakan routing protocol yang sangat reliable kerjanya. Hal ini dikarenakan BGP menggunakan protokol TCP untuk berkomunikasi dengan tetangganya
dalam melakukan pertukaran informasi. TCP merupakan protokol yang menganut sistem reliable service, di mana setiap sesi komunikasi yang dibangun berdasarkan protokol ini harus dipastikan sampai tidaknya.
Pemastian ini dilakukan menggunakan sistem Acknowledge terhadap setiap sesi komunikasi yang terjadi. Dengan demikian, hampir tidak ada informasi routing dari BGP yang tidak sampai ke perangkat tujuannya. Routing protocol BGP yang sekarang banyak, digunakan adalah BGP versi 4 atau lebih sering disingkat sebagai BGP-4.

Referensi :
• http://id.wikipedia.org/wiki/Border_Gateway_Protocol
• http://deje.wordpress.com/2007/12/27/mengapa-menggunakan-bgp/
• http://diakbara.co.cc/networking/eig

Search

Guests

About Me

Foto saya
Kota Cimahi, Prov. Jawa Barat, Indonesia
akan menghargai jika dihargai, kalo gak suka ma orang susah untuk gak bisa suka tau simpati lagi, bosenan, gak sabaran, gelehan tapi jorok.. aku rame kalo kamu rame, aku galak kalo kamu jahat.. dan masih banyak lagi tentang aku, dan orang pikir tentang aku, manja juga sih... hehe..
Diberdayakan oleh Blogger.

Followers